Imanuel's website

Imanuel's 31-tone JI 2 – A new 19-limit just tuning

Description

These "just" scales are based on equal temperament. All intervals are aimed to be within a schisma (32805/32768, ~1.95 cents) of the approximated interval from equal temperament.

I wrote a program that evaluates fractional approximations to the intervals by repeatedly incrementing the numerator of the fraction. The denominator is increased accordingly. These approximations are assigned a "distance" (or, inverse score) by dividing the larger of the two intervals (either the approximated equal temperament interval, or the approximation itself) by the smaller one. The program for a specific interval will stop when a sufficiently good approximation is found (I chose a distance below a schisma to be "sufficiently good").

One other factor however is also introduced, which often times makes these distances larger than that schisma in the end: the interval encompassing both the harmonics and the subharmonics (the product of the numerator and denominator) should be smaller than 8 octaves (2^8 = 256).

For getting the prime-limit scales, I could simply skip the approximations where either the numerator or the denominator had prime factors above the designated value. For example a 19-limit by definition has no prime factors above 19 in the numerator or denominator.

Try it now / Get Scala file

Scala file (.scl) Try it online

Scala file contents

! Imanuel's 31-tone JI 2.scl
!
A new 19-limit just tuning, more info at http://imanuelhab.mooo.com/new-31-tone-19-limit-just-tuning-imanuel
 31
!
 40/39
 22/21
 15/14
 12/11
 19/17
 8/7
 7/6
 6/5
 11/9
 5/4
 23/18
 17/13
 4/3
 15/11
 7/5
 10/7
 19/13
 3/2
 23/15
 25/16
 8/5
 18/11
 5/3
 12/7
 7/4
 25/14
 11/6
 15/8
 21/11
 39/20
 2/1

Prime factors and frequencies

Frequencies (Hz)

D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
261.6 268.3 274.1 280.3 285.4 292.4 299 305.2 314 319.8 327 334.3 342.1 348.8 356.8 366.3 373.8 382.4 392.4 401.2 408.8 418.6 428.1 436 448.5 457.8 467.2 479.6 490.5 499.5 510.2 523.3

Logarithmic frequency values (cents)

D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
0 113.2 208.1 308.6 389.1 497.4 597.2 689.4 815.4 897.5 998 1096.3 1199.8 1286.6 1387.1 1504.8 1595.2 1697.2 1813.4 1911.7 1996 2102 2202.5 2284.6 2410.6 2502.8 2593.2 2710.9 2811.4 2891.9 2986.8 3100
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100
0 13.2 8.1 8.6 -10.9 -2.6 -2.8 -10.6 15.4 -2.5 -2 -3.7 -0.2 -13.4 -12.9 4.8 -4.8 -2.8 13.4 11.7 -4 2 2.5 -15.4 10.6 2.8 -6.8 10.9 11.4 -8.1 -13.2 0

Logarithmic frequency values (cents, for 12-ET with octave equivalence)

D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
0 43.8 80.5 119.4 150.6 192.6 231.2 266.9 315.6 347.4 386.3 424.4 464.4 498 537 582.5 617.5 657 702 740 772.6 813.7 852.6 884.4 933.1 968.8 1003.8 1049.4 1088.3 1119.5 1156.2 1200
0 0 100 100 200 200 200 300 300 300 400 400 500 500 500 600 600 700 700 700 800 800 900 900 900 1000 1000 1000 1100 1100 1200 1200
0 43.8 -19.5 19.4 -49.4 -7.4 31.2 -33.1 15.6 47.4 -13.7 24.4 -35.6 -2 37 -17.5 17.5 -43 2 40 -27.4 13.7 -47.4 -15.6 33.1 -31.2 3.8 49.4 -11.7 19.5 -43.8 0
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭

Numerators

D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
1 40 22 15 12 19 8 7 6 11 5 23 17 4 15 7 10 19 3 23 25 8 18 5 12 7 25 11 15 21 39 2
5 11 5 3 19 2 7 3 11 5 23 17 2 5 7 5 19 3 23 5 2 3 5 3 7 5 11 5 7 13 2
2 2 3 2 2 2 2 3 2 5 2 3 2 5 3 3 3
2 2 2 2 2 2
2

Denominators

D♭ D♭ E♭ E♭ E♭ G♭ G♭ A♭ A♭ B♭ B♭ B♭
C C C♯ C♯ D D D D♯ D♯ D♯ E E F F F F♯ F♯ G G G G♯ G♯ A A A A♯ A♯ A♯ B B C C
1 39 21 14 11 17 7 6 5 9 4 18 13 3 11 5 7 13 2 15 16 5 11 3 7 4 14 6 8 11 20 1
13 7 7 11 17 7 3 5 3 2 3 13 3 11 5 7 13 2 5 2 5 11 3 7 2 7 3 2 11 5
3 3 2 2 3 2 3 3 2 2 2 2 2 2
2 2 2 2
2

Intervals

1 40 22 15 12 19 8 7 6 11 5 23 17 4 15 7 10 19 3 23 25 8 18 5 12 7 25 11 15 21 39 2
1 39 21 14 11 17 7 6 5 9 4 18 13 3 11 5 7 13 2 15 16 5 11 3 7 4 14 6 8 11 20 1
3 897 525 112 198 85 84 42 125 99 60 378 507 6 880 220 210 312 76 240 224 60 242 30 322 136 112 180 112 220 760 6
2 600 352 75 132 57 56 28 84 66 40 253 340 4 585 147 140 209 51 161 150 40 162 20 216 91 75 121 75 147 507 4
1 3 1 1 66 1 28 14 1 33 20 1 1 2 5 1 70 1 1 1 2 20 2 10 2 1 1 1 1 1 1 2
3 299 525 112 3 85 3 3 125 3 3 378 507 3 176 220 3 312 76 240 112 3 121 3 161 136 112 180 112 220 760 3
2 200 352 75 2 57 2 2 84 2 2 253 340 2 117 147 2 209 51 161 75 2 81 2 108 91 75 121 75 147 507 2
3 299 525 112 3 85 3 3 125 3 3 378 507 3 176 220 3 312 76 240 112 3 121 3 161 136 112 180 112 220 760 3
2 200 352 75 2 57 2 2 84 2 2 253 340 2 117 147 2 209 51 161 75 2 81 2 108 91 75 121 75 147 507 2
5 897 357 56 165 119 70 114 15 207 100 144 234 15 132 35 175 143 30 315 624 10 880 132 210 96 532 96 112 132 440 10
4 720 286 45 132 95 56 91 12 165 80 115 187 12 105 28 140 114 24 253 500 8 702 105 168 77 425 77 90 105 351 8
1 3 1 1 33 1 14 1 3 3 20 1 1 3 3 7 35 1 6 1 4 2 2 3 42 1 1 1 2 3 1 2
5 299 357 56 5 119 5 114 5 69 5 144 234 5 44 5 5 143 5 315 156 5 440 44 5 96 532 96 56 44 440 5
4 240 286 45 4 95 4 91 4 55 4 115 187 4 35 4 4 114 4 253 125 4 351 35 4 77 425 77 45 35 351 4
5 299 357 56 5 119 5 114 5 69 5 144 234 5 44 5 5 143 5 315 156 5 440 44 5 96 532 96 56 44 440 5
4 240 286 45 4 95 4 91 4 55 4 115 187 4 35 4 4 114 4 253 125 4 351 35 4 77 425 77 45 35 351 4
40 858 315 168 209 136 49 36 55 45 92 306 52 45 77 50 133 39 46 375 128 90 55 36 49 100 154 90 168 429 40 80
39 840 308 165 204 133 48 35 54 44 90 299 51 44 75 49 130 38 45 368 125 88 54 35 48 98 150 88 165 420 39 78
1 6 7 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 3 3 1 2
40 143 45 56 209 136 49 36 55 45 46 306 52 45 77 50 133 39 46 375 128 45 55 36 49 50 77 45 56 143 40 40
39 140 44 55 204 133 48 35 54 44 45 299 51 44 75 49 130 38 45 368 125 44 54 35 48 49 75 44 55 140 39 39
40 143 45 56 209 136 49 36 55 45 46 306 52 45 77 50 133 39 46 375 128 45 55 36 49 50 77 45 56 143 40 40
39 140 44 55 204 133 48 35 54 44 45 299 51 44 75 49 130 38 45 368 125 44 54 35 48 49 75 44 55 140 39 39

Shift intervals in table


Numerators (circle of fifths)

G♭ D♭ A♭ E♭ B♭ E♭ B♭ G♭ D♭ A♭ E♭ B♭
C G D A E B F♯ C♯ G♯ D♯ A♯ F C G D A D♯ A♯ F C G D A E B F♯ C♯ G♯ D♯ A♯ F C
1 3 38 10 5 15 56 352 25 112 56 1088 624 2432 3072 4608 5632 2816 15360 81920 47104 32768 49152 94208 172032 163840 245760 262144 393216 819200 524288 262144
3 19 5 5 5 7 11 5 7 7 17 13 19 3 3 11 11 5 5 23 2 3 23 7 5 5 2 3 5 2 2
2 2 3 2 2 5 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 3 2 3 2 2 5 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2
2 2 2 2
2

Denominators (circle of fifths)

G♭ D♭ A♭ E♭ B♭ E♭ B♭ G♭ D♭ A♭ E♭ B♭
C G D A E B F♯ C♯ G♯ D♯ A♯ F C G D A D♯ A♯ F C G D A E B F♯ C♯ G♯ D♯ A♯ F C
1 2 17 3 1 2 5 21 1 3 1 13 5 13 11 11 9 3 11 39 15 7 7 9 11 7 7 5 5 7 3 1
2 17 3 2 5 7 3 13 5 13 11 11 3 3 11 13 5 7 7 3 11 7 7 5 5 7 3
3 3 3 3 3

Intervals

1 3 38 10 5 15 56 352 25 112 56 1088 624 2432 3072 4608 5632 2816 15360 81920 47104 32768 49152 94208 172032 163840 245760 262144 393216 819200 524288 262144
1 2 17 3 1 2 5 21 1 3 1 13 5 13 11 11 9 3 11 39 15 7 7 9 11 7 7 5 5 7 3 1
3 76 170 15 15 112 1760 525 112 168 1088 8112 12160 39936 50688 61952 25344 46080 901120 1837056 491520 344064 659456 1548288 1802240 1720320 1835008 1966080 4096000 3670016 786432 786432
2 51 114 10 10 75 1176 352 75 112 728 5440 8112 26752 33792 41472 16896 30976 599040 1228800 329728 229376 442368 1036288 1204224 1146880 1228800 1310720 2752512 2457600 524288 524288
1 1 2 5 5 1 8 1 1 56 8 16 16 128 16896 512 8448 256 5120 6144 2048 114688 4096 4096 8192 573440 16384 655360 32768 32768 262144 262144
3 76 85 3 3 112 220 525 112 3 136 507 760 312 3 121 3 180 176 299 240 3 161 378 220 3 112 3 125 112 3 3
2 51 57 2 2 75 147 352 75 2 91 340 507 209 2 81 2 121 117 200 161 2 108 253 147 2 75 2 84 75 2 2
3 76 85 3 3 112 220 525 112 3 136 507 760 312 3 121 3 180 176 299 240 3 161 378 220 3 112 3 125 112 3 3
2 51 57 2 2 75 147 352 75 2 91 340 507 209 2 81 2 121 117 200 161 2 108 253 147 2 75 2 84 75 2 2

Shift intervals in table by fifths


Numerators (circle of fourths)

B♭ E♭ A♭ D♭ G♭ B♭ E♭ B♭ E♭ A♭ D♭ G♭
C F A♯ D♯ G♯ C♯ F♯ B E A D G C F A♯ D♯ A D G C F A♯ D♯ G♯ C♯ F♯ B E A D G C
1 4 25 12 16 30 40 84 92 96 128 368 1280 480 176 704 1152 1536 2432 1248 4352 448 1792 800 22528 7168 1920 2560 10240 77824 6144 8192
2 5 3 2 5 5 7 23 3 2 23 5 5 11 11 3 3 19 13 17 7 7 5 11 7 5 5 5 19 3 2
2 5 2 2 3 2 3 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 5 2 2 3 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2
2 2

Denominators (circle of fourths)

B♭ E♭ A♭ D♭ G♭ B♭ E♭ B♭ E♭ A♭ D♭ G♭
C F A♯ D♯ G♯ C♯ F♯ B E A D G C F A♯ D♯ A D G C F A♯ D♯ G♯ C♯ F♯ B E A D G C
1 3 14 5 5 7 7 11 9 7 7 15 39 11 3 9 11 11 13 5 13 1 3 1 21 5 1 1 3 17 1 1
3 7 5 5 7 7 11 3 7 7 5 13 11 3 3 11 11 13 5 13 3 7 5 3 17
2 3 3 3 3 3

Intervals

1 4 25 12 16 30 40 84 92 96 128 368 1280 480 176 704 1152 1536 2432 1248 4352 448 1792 800 22528 7168 1920 2560 10240 77824 6144 8192
1 3 14 5 5 7 7 11 9 7 7 15 39 11 3 9 11 11 13 5 13 1 3 1 21 5 1 1 3 17 1 1
4 75 168 80 150 280 588 1012 864 896 2576 19200 18720 1936 2112 10368 16896 26752 16224 21760 5824 1792 2400 22528 150528 9600 2560 10240 233472 104448 8192 32768
3 56 125 60 112 210 440 756 644 672 1920 14352 14080 1440 1584 7744 12672 19968 12160 16224 4352 1344 1792 16800 112640 7168 1920 7680 174080 77824 6144 24576
1 1 1 20 2 70 4 4 4 224 16 48 160 16 528 64 4224 128 32 32 64 448 32 32 1024 128 640 2560 2048 2048 2048 8192
4 75 168 4 75 4 147 253 216 4 161 400 117 121 4 162 4 209 507 680 91 4 75 704 147 75 4 4 114 51 4 4
3 56 125 3 56 3 110 189 161 3 120 299 88 90 3 121 3 156 380 507 68 3 56 525 110 56 3 3 85 38 3 3
4 75 168 4 75 4 147 253 216 4 161 400 117 121 4 162 4 209 507 680 91 4 75 704 147 75 4 4 114 51 4 4
3 56 125 3 56 3 110 189 161 3 120 299 88 90 3 121 3 156 380 507 68 3 56 525 110 56 3 3 85 38 3 3

Shift intervals in table by fourths



Copyright © 2020 Imanuel Habekotté

Page rendered on 07-06-2020 at 13:43:55, it took 14.14078 seconds